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Introduction 
• Geometric Features are central in a wide range of 

applications 
− Example Features: 

    Curvature, Shape Index 
− Example Applications: 

    Object Retrieval, Registration, Stylized Rendering 
 

• Static geometry: Pre-compute 
 

• Dynamic/Animated: Fast-computation is challenging 
 

2 



Feature Computation 
• We focus on the general case of 

features with finite local support 
 

• Key Element 
− Vertex Adjacencies/Point Neighbors 
− N-ring, Euclidean or Geodesic 

Distance 
 

3 



Related Work 
• Existing methods can be classified based on the 

sampling method of the geometry 
− Object space 
− Volumetric 
− Screen Space 
− Parametric space 
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Object space 
• Data structure encoding the adjacency is required (half-edge, 

kD-tree etc) 
 

• These methods do not scale well as computational complexity is 
directly linked to 
− Geometric density 
− Area of support 

 

• GPU mapping is non-trivial. Existing approaches do not 
generalize the sampling neighborhood. [Griffin et al., 2011] 
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Screen space 
• Sample geometric information from a 2D pixel buffer. 

 

• Adjacencies are implied by the pixel grid 
− Trivial sampling, efficient mapping to GPU’s 
 

• Disadvantage: Computations and area of support area limited to 
the visible point set 
− Inaccuracies, near occlusion points and at screen-space silhouettes 

 

[Mellado et al., 2013] 
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Volumetric 
• A volumetric representation is used (ex. level-set) 

 

• Computational complexity now depends on the representation 
 

• Disadvantages 
− Volumetric discretization is far more rough than the original surface 
− Incompatible results (ex. non-manifold surfaces) 
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Parametric Space 
• Methods of this category rely on the unwrapped surface of the 

model on a 2D plane 
 

• Computational complexity decoupled from the geometry 
 

• Disadvantages 
− Neighbor discovery is not trivial 
− Cannot be performed directly on point clouds 

 

• Existing methods are not generic 
− [Novatnack and Nishino, 2007] focus on image space techniques 
− [Hua et al.] Require specific unwrapping methodologies. 
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Motivation 
• Design a method that is efficient, accurate and 

generic 
− Efficiency: Close to real-time even for large area of 

support for animated/deformable objects  
− Excludes Object Space 

 

− Accuracy: Similar results to a reference Object Space 
method 
− Excludes Screen Space & Volumetric 

 

− Generality: Not restricted to a specific feature, or 
parameterization 
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Method Overview 
• Operates in parametric-space, but is 

agnostic to the actual mapping of the 
surface 
 

• Vertex Adjacencies  Pixel Adjacencies 
− Not a perfect world: Chart boundaries 

create discontinuities of geometric 
adjacencies 

10 



Method Overview 
• Pre-Process 

− Locate affected edges and store 
extra information 
 

• Real-Time 
− Create Data Buffers 

− Geometry, Normal, Adjacency 
− Recreate Adjacencies and 

perform Computations 

Data Buffers 
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Data Buffers 
• Information is stored in Textures 

− Geometry Buffer  
 Object space positions, Chart id 

 

− Normal Buffer  
 

− Adjacency Buffers 
− Discontinued Edges 
 Adjacent chart id 
 Corresponding chart coordinates 
 Relative Scale & Rotation 

− Local metric distortion (LMD) 
 Angular distortion 
 u, v stretch factors 
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Data Buffer Generation 

• Rasterize object triangles 
− Chart boundary edges are rasterized separately to avoid 

disconnected regions 
 

• LMD factors computed using eigen-decomposition of 
the first fundamental form matrix 

− Used for the anisotropic adjustment of scale and sampling 
directions 
 

13 

T
P P

E F
J J

F G
 

=  
 

2( ( , ) / )E P u v u= ∂ ∂

( ( , ) / ) ( ( , ) / )F P u v u P u v v= ∂ ∂ ⋅ ∂ ∂

2( ( , ) / )G P u v v= ∂ ∂



Sampling the Neighborhood of a Point 
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Sampling the Neighborhood of a Point 
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Monte Carlo Integration 
• Geometric feature computation is usually performed with surface 

and volume integrals 
 

• We estimate by Monte Carlo integration 
 

• Generate random samples using  
a stratification scheme on a grid and  
transform them to disk using concentric 
mapping 
 

• Disk samples are anisotropically scaled  
and rotated according to LMD factors. 
 

• We sample A(s) ellipse using sample rejection based on the 
criterion of neighborhood S(p) 
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Monte Carlo Integration 
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Adaptive Sampling 
• Smooth surface areas converge faster than areas 

with high variance 
• We use simplified two-step adaptive sampling 
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Results 
• Implemented Geometric Features 
− Mean Curvature 
− Local Bending Energy 
− Normalized Sphere Volume 
− Shape Index 

 

• Comparison with multi-core CPU object space 
approach using Half-Edge data structure 
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Results (Mean Curvature) 
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Reference Our Method 

~22x 

~25x 



Results (Local Bending Energy) 
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Reference Our Method 

~5x 

~6x 



Results (Sphere Volume) 
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Reference Our Method 

~200x 

~8x 



Results (Shape Index) 
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Reference Our Method 

~105x 

~16x 



Results (Different Parameterizations) 
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Results (Scalability) 
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Thank you! 
• Questions ? 
• More info: 
− http://presious.eu 
− http://graphics.cs.aueb.gr 
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