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Abstract: In this paper we present a novel generic method for the fast and accurate computation of geometric features
at multiple scales. The presented method works on arbitrarily complex models and operates in the parametric
space. The majority of the existing methods compute local features directlyon the geometric representation
of the model. Our approach decouples the computational complexity fromthe underlying geometry and in
contrast to other parametric space methods, it is not restricted to a specific feature or parameterization of the
surface. We show that the method performs accurately and at interactive rates, even for large feature areas of
support, rendering the method suitable for animated shapes.

1 INTRODUCTION

Geometric features, like curvature and surface rough-
ness, are central to demanding computations in a wide
range of applications, including object retrieval and
registration, texture synthesis, stylized rendering and
many more. The computation of these fundamental
metrics is usually performed by CPU algorithms that
operate on a discrete polygonal representation of a
continuous surface. These metrics can be precom-
puted for static meshes, but their fast computation
even for moderately large or dynamic meshes, is chal-
lenging.

In this paper we focus on the general class of met-
rics with finite local support, whose computation de-
pends on the local neighborhood of an arbitrary point
p on the object’s surface. Robustness in the presence
of noise is achieved through multi-scale computation
of the features (Yang et al., 2006). To this end, a
data structure that encodes the adjacency information
is required, in order to efficiently locate the neigh-
boring points on a surface. This is especially true
for algorithms that operate on meshes. The compu-
tational complexity of such anobject-spaceapproach
is directly proportional to the geometric density and
quadratic with respect to the extent (i.e. radius) of
the local feature support. Despite the fact that com-
puting the metric for independent surface points is an
inherently parallel task, the use of complex data struc-
tures for storing the adjacency information prevents a
trivial and efficient mapping of these computations to

Figure 1: a) ”Lucy” model (200K) colorized with mean cur-
vature, computed in 49ms, b) geometry (position) buffer
(normalized for visualization), c) surface normal buffer, d)
polygon chart identifiers (colorized for clarity) along with
the adjacent chart identifiers on border pixels, e) mean cur-
vature in parametric space (colorized for visualization).

massively parallel stream processors, like commod-
ity GPUs, at an arbitrary neighborhood scale. For
these reasons, real-time computation is often limited
to meshes with relatively low geometric complexity
and 1-ring vertex neighborhoods (Griffin et al., 2011).

Our approach for local feature computation shifts
all calculations from object-spaceto parametric



space, by transferring all the geometric data of the
object to a two-dimensional layout, along with extra
adjacency information that allows us to reconstruct
the object-space local neighborhood of a given point
on the fly. While this choice is similar toGeome-
try Images(Gu et al., 2002), we do not restrict our
method to a specific parameterization method, but
rather develop a scheme that can handle any under-
lying parameterization, including multi-chart layouts.
The benefits of parametric-space feature calculations
are twofold: First, sampling the geometry at arbitrar-
ily large areas of support is much more efficient in
parametric space, since the samples can be directly
indexed in contrast to a geometry-based estimation,
where the traversal of a surface patch is performed
via the connectivity information of the vertices. Sec-
ond, the parametric space computations are directly
mapped to the GPU/many-core computing paradigm
in a very efficient manner, rendering the approach
suitable for real time calculations over deformable or
animated objects.

2 RELATED WORK

Most methods in the bibliography concentrate on the
computation of a specific geometric feature, and do
not generalize their framework to encompass more
features. Since our method is more generic, for our
overview, we focus on the way each method samples
the geometric information of the object, instead of
the particular feature computation. Existing methods
can be classified to those that sample the geometry in
object-space, screen space, a volumetric representa-
tion andparametric space. In the remainder of this
section we will review the main representatives for
each category.
Object-space methods operate directly on the ge-
ometry of the mesh. (Taubin, 1995) and (Meyer
et al., 2003) generalize the differential-geometry-
based definition of curvatures to discrete meshes but
their computations are limited to 1-ring neighbor-
hoods which renders them sensitive to noise. Sim-
ilarly (Rusinkiewicz, 2004) estimate the curvature
over meshes using essentially a 2-ring neighborhood.
For efficient arbitrary neighborhoods (support re-
gions), object space methods require a data structure
that encodes the adjacency information between the
triangles of the mesh, such as thehalf-edge(Cam-
pagna et al., 1998) or a kd-tree data structure. How-
ever, as discussed in the introduction, a mapping of
this data structure to the GPU is neither trivial nor
optimal. Most feature computation methods belongs
to this category and thus operate on the CPU. GPU-

based methods, have been proposed for the computa-
tion of specific features, like curvature (Griffin et al.,
2011), but these methods do not generalize to the sam-
pling of arbitrary neighborhoods.

Screen space methods sample the geometric informa-
tion of a mesh from a 2D pixel buffer, where each
pixel encodes the projected surface position of the
mesh from a specific point of view. In this case, adja-
cency information is implied by the pixel grid, there-
fore sampling is trivial and can be efficiently mapped
to GPUs. This efficiency in sampling is also the main
motivation behind our method. The main disadvan-
tage of screen-space methods is that computations are
limited to the surface points visible from a particular
view, resulting in inaccuracies near occluded points
and at the screen-space silhouettes of the object. Such
screen-space methods have been proposed for curva-
ture estimation in real-time stylized rendering (Mel-
lado et al., 2013), (Kim et al., 2008). Our method
retains most of the sampling efficiency of the screen-
space methods, but avoids the view-dependence of the
results by moving all the computation to the paramet-
ric space.

Volumetric data and algorithms can be also employed
for feature computations. In this case, the input mesh
is initially converted to a volumetric representation,
such as alevel set, and then geometric features are
computed by sampling this representation, instead of
the original mesh. Finally, the results of these calcula-
tions are mapped to the original mesh. The advantage
of this approach is that the computational complex-
ity does not depend on the underlying geometry but
rather on the new volumetric representation, where
sampling a local neighborhood around a surface point
is often more efficient than sampling the same neigh-
borhood on the original geometry. Features, like cur-
vature, can be quickly approximated using the gra-
dient field of the object, as described in the Open-
VDB (Museth, 2013) or by using convolutions, which
can be accelerated using FFT as shown in (Pottmann
et al., 2007). The disadvantage of this approach is
that an efficient voxelization method is required, addi-
tional memory is consumed for the storage of the vol-
umetric format and most importantly, the computa-
tions are based on a volumetric discretization, which
is a more rough representation of the original surface
than the triangular mesh. Furthermore, certain fea-
tures when computed on volumetric data, are incom-
patible with the results of the respective surface-based
measurements, especially for non-manifold surfaces.

Parametric space. Finally, specific methods have
been proposed for parametric space as well. Meth-
ods in this category rely on a the unwrapped sur-
face of the model on a 2D plane. Using this rep-



resentation, computational complexity is decoupled
from the underlying geometry and additionally, sev-
eral image analysis techniques can be applied intu-
itively to 3D data. To our knowledge, so far there has
been no practical and generic approach that would al-
low both geometric and image space features to be
computed efficiently, as existing methods focus on
applying image space techniques only. (Novatnack
and Nishino, 2007) propose a method for corner and
edge detection that requires a user-driven single chart
parametrization. Furthermore, to handle points ly-
ing near the perimeter of charts, the authors construct
complementary parameterizations, for which bound-
ary regions are then mapped to internal chart loca-
tions. (Hua et al., 2008) describe another method
that locates extrema using a scale space representa-
tion. Their method relies on a specialized conformal
mapping and expects pre-computed per-vertex values
of mean-curvature and geodesic distance. In contrast,
our method does not rely on a specific parameteriza-
tion approach, nor does it require any pre-computed
features.

3 METHODOLOGY

Our method operates on fully parameterized geom-
etry but does not rely on a specific method for this
task. Initially, we perform a pre-processing step in
order to locate the surface edges of the polygonal rep-
resentation, which are mapped to discontinuous re-
gions in parametric space. This is usually part of the
model loading process. In real-time, we create the
parametric-space representation of the geometry, aug-
mented by the adjacency information and perform the
feature computation of discrete locations in paramet-
ric space, i.e. on a texture buffer. During this step,
we utilize the information stored in our geometry and
adjacency buffers in order to index arbitrary surface
samples in the neighborhood of a pointp, regard-
less of its parametric mapping. The measured metrics
can be then queried per vertex, using standard texture
look-up operations, or used directly in image space,
e.g. to extract salient features and local image-space
descriptors. In the rest of this section we will present
in detail each one of the above steps.

3.1 Surface Parameterization

Surface parameterization as (Floater and Hormann,
2005) explain, can be viewed as a one-to-one map-
ping from a suitable domain to a surface. Our method
expects fully parameterized geometry in a normalized
2D domain. This procedure is also known as (bijec-

Figure 2: The ”bunny” model with two parameterizations,
resulting in different set ofcharts.

tive) uv-mappingand the resulting surface patches are
referred to ascharts or uv-islands(see Figure 1(d),
and 2). The area of surface parameterization has been
extensively researched in the past years, (Floater and
Hormann, 2005), (Sheffer et al., 2006) and the min-
imization of stretch distortion has been the goal of
several works, such as that of (Sander et al., 2001),
(Yoshizawa et al., 2004) and (Zhou et al., 2004).
Therefore, we do not address this part in our work,
but rather rely on existing methods and solutions.

3.2 Pre-Processing Operations

In any local feature estimation technique, we need to
calculate an operatorF(p,S(p)) at a pointp, given a
neighborhoodx ∈ S(p), x satisfying a set of criteria,
such as a maximum Euclidean or geodesic distance
from p, or then-ring adjacency ofx to p (max. n
vertex graph distance). These relations in geometric
space are easily represented using data structures with
topology. For a review of the existing geometric data
representations, see the work of (De Floriani and Hui,
2005).

On the other hand, when operating in 2D paramet-
ric space, the connectivity information is implied by
the adjacency of neighboring pixels. However, this is
not true on the borders of charts, where adjacent ge-
ometry is mapped to discontinuous locations in para-
metric space (see example in Figure 3). In this case,
additional information should be stored at the bor-
der pixels to keep track of the hops to geometrically-
adjacent pixels in different charts.

In order to appropriately annotate the chart pixels,
mesh vertices located at the borders of charts must be
first identified and the link to the geometrically adja-
cent vertices on different charts has to be stored on the
affected vertices. Details regarding the information
stored can be found in Section 3.3. The complexity of
this step is equivalent to the pre-processing stage of
all object-space approaches for the adjacency infor-
mation generation and even for large models, it only
takes a few seconds to complete. This stage needs to
be performed only once, as the adjacency information
for topologically unchanging geometry can be stored
in the 3D model file itself.



3.3 Generation of the Data Buffers

The computation of geometric features requires a set
of attributes per sampled surface location, such as
the coordinates ofp in the object’s local space and
the respective normal vectorn. These data must be
transferred to the parametric space and stored in ap-
propriate buffers, i.e. a set of textures that corre-
spond to the normalized parametric space of the un-
wrapped geometry. The buffers also store the iden-
tifier of the polygon chart thatp belongs to. The
object-space position of surface points is stored in a
geometry buffer P(u,v), the normal vectors are placed
in a normal buffer N(u,v), whereas the chart identi-
fiers are registered in an ID channel in the geometry
buffer (ID(u,v)). Another set of textures, compris-
ing theadjacency buffer, equal in size to the geometry
buffer, store the identifier of the adjacent chart, thelo-
cal metric distortionof the parameterization (see be-
low), the corresponding(u,v) coordinates on the ad-
jacent chart, as well as the relative scale and rotation
between the two charts. An example of the data chan-
nels for the position, normal and current and adjacent
chart identifiers is shown in Figure 1.

The buffer generation process is performed in two
steps. First, the geometric information is efficiently
generated in the GPU by rasterizing the object trian-
gles using orthographic projection, where the normal-
ized texture coordinates(u,v,1) are used as the vertex
coordinates of the mesh. The chart ID is passed as
a vertex attribute and copied for all points inside the
triangles of a chart. Similarly to (Sander et al., 2003)
we also rasterize each chart’s boundary edges in order
to avoid the generation of disconnected regions.

In the second step, we compute thelocal metric
distortion factors that will be used for the anisotropic
adjustment of scale and sampling direction in various
calculations. In order to do so we use theJacobian
JP = (Pu,Pv), wherePu andPv the partial derivatives
of the surface. The left-singular vectors ofJP are
used in order to get theθe angular distortion of the
anisotropic ellipse while the singular values ofJP σu,
σv are the stretch factors in theu andv direction. Due
to the fact that the singular value decomposition is a
tedious task, we use the equivalent eigen decomposi-
tion of the 2x2 first fundamental form matrix:

JT
P JP =

[

E F
F G

]

, (1)

whereE = (∂P(u,v)/∂u)2, G = (∂P(u,v)/∂v)2 and
F = (∂P(u,v)/∂u) · (∂P(u,v)/∂v). For more informa-
tion see (Hormann et al., 2008). Additionally, in this
second pass we also store the rest of the adjacency
data. These attributes are calculated when setting up
the triangle connectivity and are simply copies to the

Figure 3: Indexing a sample inside the neighborhood of a
point. Samplet does not lie inside the chart ofs. Locate
the boundary pointb, read adjacency buffers and relocate
sample to adjacent chart.

adjacency buffers for the chart border pixels. While
for static objects the buffer generation step could be
performed only once, we focus on a method suitable
for deformable/animated objects, and treat it as a per-
frame event. Therefore, the reported timings in the re-
maining text include the data buffer generation over-
head.

3.4 Sampling the Neighborhood of a
Point

In order to be able to perform the calculation of a fea-
ture F(p,S(p)) in parametric space, we need to es-
tablish a procedure for drawing individual samples
from the neighborhoodS(p) of p. Our approach es-
timatesF(p,S(p)) in image space and therefore, for
every pixel(i, j) with a corresponding parameter pair
s = (u,v), p(u,v) is first retrieved from the geometry
buffer: p = P(u,v). Then, assuming a maximum ra-
dius of supportrmax for the local feature estimator in
object-spaceunits, a samplet= (u′,v′) is generated in
a regionA(s) in parametric space so thatx = P(t) sat-
isfies the neighborhood criterion.A(s) is calculated
as an ellipse of radii(1/σu(s),1/σv(s)) · rmax in the
parametric domain (upper distance bound) rotated by
θe, in order to account for local angular distortion and
scale, andx is acquired with rejection sampling ac-
cording to the selected neighborhood criterion (Fig-
ure 3). The exact pattern or random distribution with
which the samples are generated is specific to the fea-
ture estimator and the generic sampling approach pre-
sented here is agnostic to it. Also, since we perform a
random sampling of the neigborhood ofs, no assump-
tion is made about the chart’s convexity.

Since the ellipseA(s) may extend beyond the
boundary of the chart containingp (Figure 3), a more
elaborate mechanism is required to handle the sam-
ples that fall outside the chart. These samples ob-
viously contribute to the result and should not be
discarded. Identifying whether the samplex at t
lands on the same chart asp is trivially resolved by



Figure 4: More examples of indexing samples.t1 returns
to the same chart after a jump.t2 parametric location is
located using two jumps. In the right part, chart adjacencies
are colored across the borders.

checking their respective chart identifiersID(u,v) and
ID(u′,v′).

In the case wheret lands outside the chart ofp,
we utilize the parametric adjacency data stored in our
buffers to find its true location. Initially, we march
along the direction

−→
st in pixel-sized increments to lo-

cate the first pixel with the chart ID asp (boundary
point b). The adjacency buffer for a border pixelb of
a chart contains the ID of the adjacent chart and the
parametric locationb′ of the corresponding point on
it. For samples across seams of the same chart, the
ID of the adjacent buffer is identical to that ofp, but
the parametric locationb′ points safely to the corre-
sponding location on the same chart (see Figure 4-t1).
The adjacency buffer contains also the relative chart
edge rotationθ(b → b′) betweenb andb′. Finally, a
non-uniform scale factors(b → b′) can be calculated,
corresponding to the relative scale of the two charts
in parametric space at their border locationsb andb′

(this scale factor may vary across a chart):

s(b → b′) =

(

σu(b′)

σu(b)
,

σv(b′)

σv(b)

)

. (2)

Therefore, we can adjust the location oft according to
the following parametric space transformation to ob-
tain the relocated sampling positiont′ on the adjacent
chart:

t′ = b′+Rθ(b→b′)Ss(b→b′)(t−b), (3)

whereRθ(b→b′) is the rotation matrix of angleθ(b →

b′) and Ss(b→b′) is the non-uniform scale matrix of
factors(b → b′). In caset′ lands outside the expected
chart, the same search is performed similarly in the
−→
sb′ direction (see Figure 4-t2). The sample reloca-
tion procedure is shown in Figure 3. Note that the full
non-rigid transformation oft corresponds to the adap-
tation of the initial sampling ellipse to the new charts.
Therefore, if no severe stretching is present,S(p) is
properly covered.

A useful side-effect of the parametric-space com-
putation is that feature estimation can take into ac-

Figure 5: Monte Carlo Sampling in current and adjacent
charts described in Section 4.1.

count displacement and normal mapping. In the spe-
cial case of displacement mapping, our method could
be easily adopted in order to handle the changes in
the geometry that could break the neighborhood esti-
mation heuristic. Points lying within the initial Eu-
clidean neighborhood that stretch out of it due to
the displacement are automatically handled by mea-
suring the Euclidean distance fromp. The problem
arises when point with initial location outside the Eu-
clidean neighborhood ofp fall within rmax after dis-
placement. By scalingσu andσv with the maximum
expected displacement distortion, which is usually a
user defined parameter, the method successfully han-
dles these points as well.

Finally, we need to clarify that if our method fo-
cused only on single chart parameterizations such as
Geometry images(Gu et al., 2002) we could avoid
highly irregular transitions and in this way reduce the
complexity of our operations. On the other hand,
multi-chart parameterizations offer an added flexibil-
ity that can be used to reduce distortion, particularly
for shapes with long extremities, high genus, or dis-
connected components (Sander et al., 2003) (see Fig-
ure 13).

4 ESTIMATION OF INTEGRAL
FEATURES

Central to many geometric feature computations is
the estimation of surface and volume integrals in the
neighborhood ofp. Integral invariant features for in-
stance, are often used in the formulation of local de-
scriptors (Huang et al., 2006), or provide the means
to estimate differential invariants such as the mean
curvatureH (see (Connolly, 1986) and (Manay et al.,
2004)).

We estimate integrals in a neighborhoodS(p)) us-
ing Monte Carlo integration in parametric space and
in Section 5 we use this approach to compute a va-
riety of integral and differential features interactively
for arbitrary feature scales.



4.1 Monte Carlo Integration

In parametric space, the generated data buffers hold
not only the vertex information but also all inter-
nal polygon samples, generated by the GPU through
linear interpolation during rasterization. Utilizing
Monte Carlo integration with a uniform distribution
in the parametric domain, any integralI(p) of a func-
tion g(p) overS(p) can be approximated by:

〈I〉(p) =
A′(s)

N

N

∑
i=1

g(P(ti)), (4)

whereA′(s) is the portion of the elliptical sampling
areaA(s) centered at parameter pairs corresponding
to the central pointp = P(s) after rejection sampling
with the criterion of neighborhoodS(p) (e.g. Eu-
clidean distance ofP(t) to p) andN is the number of
valid samples. While performing a similar sampling
on the geometry itself would require area-weighted
probabilities, the parametric-space values can be sam-
pled uniformly, assuming of course a low-distortion
parameterization.

Random samples are generated uniformly using a
stratification scheme. Uniform samples in the cells of
a planar grid are transformed to disk samples using
the concentric mapping of (Shirley and Chiu, 1997).
The disk samples are anisotropically scaled along the
u andv axes to form the elliptical regionA(s), accord-
ing to the distortion factors discussed in Section 3.3.
The same samples are used at each pixel, randomly
rotating them to avoid statistical noise.

The elliptical regionA(s) is an approximation that
favors fast computations. A more refined but rather
more computationally expensive approach would be
to pre-compute the maximal distortion for discretized
polar coordinates at each pixel and subsequently
anisotropically scale each random sample according
to the closest distortion term from its conversion to
polar coordinates. Nevertheless, as demonstrated in
the experiments, the elliptical approximation proved
to be both robust and efficient, even for large neigbor-
hoods.

Given a pointp and its location in parametric
spaces, initially we perform computations only for
the samples that lie on the same chart asp (Figure 5
- right). At the same time, for all parametric-space
samples that fall outside the chart, we mark the ID of
the chart they land on. Subsequently, we compute for
each marked chart the transformed parametric posi-
tion s′ of the central parametric pairs and repeat the
sampling procedure on the new location, using the
entire sampling pattern (Figure 5 - left). Only sam-
ples falling within the new chart are accounted for and
contribute to the final integral. The marking of charts

and the central point transformation is done according
to the procedure described in Section 3.4.

The sampling scheme described above is generic
and could be implemented for an arbitrary number of
jumps, excluding each time the already visited charts.
In our experiments we noticed that, no more than
one jump per sample point was typically required,
even for large-scale local feature neighborhoods. Of
course, this also depends on the size of the charts pro-
duced by the parameterization. For example, in Fig-
ure 2, where the bunny model is shown in two dif-
ferent parameterizations, for the left one we reported
the first missing sample using a support area of 10%
the object’s diagonal. Conversely, for the one on the
right we did not report any missing samples even for
neighborhoods larger than 16% the object’s diagonal.

4.2 Adaptive Sampling

Since g(x) is a function of the surface geometry,
smooth areas of the objects, i.e. areas with smaller
variance of the evaluated functiong(x), give satis-
factory results even when dropping the sampling rate
significantly. This fact is an opportunity for a speed-
up, given that computation time is proportional to
the number of samples drawn, so we exploit adaptive
sampling to this end.

Typically, adaptive sampling methods continue to
draw random samples, until the variance of the com-
puted quantity falls below a certain threshold. In our
method however, we perform a simplified, two-step
adaptive sampling, instead of waiting for the variance
to converge: We first compute the integral withN/2
samples and measure the variance. For those pointsp
for which the variance ofg(x) is greater than a prede-
termined threshold, we use an additional set ofN/2
random samples. Using a fixed, two-stage adaptive
sampling creates exactly two different GPU execu-
tion loads, generally coherent across the output buffer,
thus maximizing shader core utilization and perfor-
mance.

Our experiments show that as the number of sam-
ples increases, the difference of % Absolute Error (%
AE) between the full and adaptive sampling declines,
while at the same time the performance savings in-
crease. (see Table 1 and Figure 6).

5 PERFORMANCE AND
QUALITY EVALUATION

In this section we present a number of local geo-
metric feature operators using our method and pro-
vide a qualitative comparison against respective ref-



Figure 6: Comparison of mean curvature for Full and Adap-
tive Sampling. (r) Reference (a), (b), (c) Full Sampling us-
ing 64, 100 and 256 samples in respect. (d), (e), (f) Adaptive
Sampling using 32/64, 64/128 and 128/256 samples.

erence CPU algorithms that operate directly on the
polygonal geometry using theHalfedgedata-structure
(HE) (Campagna et al., 1998).

5.1 Implemented Local Features

Local Bending Energy (LBE). (Huang et al., 2006)
in order to classify a surface as fractured or intact in
their fragment reassembly framework define the LBE
term ek(p) for the k nearest vertices to a surface lo-
cationp. Similarly, given an Euclidean neighborhood
qi ∈ S(p, r) : ‖qi −p‖ ≤ r with corresponding normal
vectorsni , LBE er(p) can be defined as:

er(p) =
1
N

N

∑
i=1

‖n−ni‖
2

‖p−qi‖2 , (5)

wheren is the normal at the central pointp andN is
the number o samples taken in theS(p, r) neighbor-
hood.
Sphere Volume. (McGuire et al., 2011) presented
a stochastic solid angle computation for the approx-
imation ambient occlusion in the hemisphere above
a point p. Inspired by this idea, we extend it to a
full sphere and compute a fast approximation of the
unoccupied volume of a sphere of radiusr centered
at p. Assuming a smoothly varying tangential eleva-
tion aroundp, the vectorqi −p from the central point
to any sampleqi within the Euclidean neighborhood
S(p, r) approximates the horizon in this direction with
respect to the normal vectorn at p at a distance scale
equal to‖qi −p‖. Taking a uniform rotational and ra-
dial distribution of samples (direction and scale)qi in
S(p, r), we can approximate the open volumeVo(p)
abovep by:

Vo(p) =
4πr3

3N

N

∑
i=1

(qi −p)n
‖qi −p‖

. (6)

Samples
Full Adaptive

Time % AE Time % AE

64 17.57ms 1.172 15.94ms 1.331

100 22.17ms 1.035 19.54ms 1.110

256 50.54ms 1.005 41.44ms 1.007

400 74.21ms 0.789 61.75ms 0.824

Table 1: Computation Time and % Absolute Error for Full
and Adaptive Sampling over the same metric. Error in com-
parison to reference CPU implementation.

Thesphere volume integral invariant, i.e. the part of
the sphere volume of radiusr ”inside” the surface at
p (Pottmann et al., 2009) is the complement of the
above integral quantity.
Mean Curvature (MC). (Hulin and Troyanov, 2003)
derive the relation ofMC to the sphere volume inte-
gral invariant as:

Vr(p) =
2π
3

r3−
πH
4

r4+O(r5), (7)

from which we can directly compute MCH atp for a
given radiusr.
Shape Index (SI). Introduced by (Koenderink and
van Doorn, 1992), SI is a local descriptor that com-
bines the principal curvatures (PC) in order to classify
the locale shape of the surface. SI is a normalized de-
scriptor and for a given surface pointp is defined as:

S(p) =
2
π

arctan
K2(p)+K1(p)
K2(p)−K1(p)

, (8)

whereK1(p), K2(p) are the principal curvatures atp.
In order to calculate theK1 and K2, we rely on

their relation to mean curvatureH and Gaussian cur-
vature (GC)K:

K1,2 = H ±
√

H2−K. (9)

The computation ofH was discussed earlier. For the
GC we rely on the work of (Bertrand et al., 1848)
that relatesK with the perimeter and surface area of
a geodesic disk on a surface. In particular, we utilize
the formula that uses the geodesic areaGAof distance
r:

K = 12
πr2−GAr

πr4 . (10)

The only unknown parameter now is the geodesic area
GAr at a given distancer. In the case of the geo-
metric evaluation, we sum the Voronoi area of each
vertex within a neighborhood of geodesic distancer.
For the parametric-space computation ofGAr , we first
draw a number of samplesNtot in the Euclidean neigh-
borhood ofp (see Section 4.1). Then, for each sam-
ple qi at parametric locationti , the geodesic distance
to p is approximated by a sum of chords atP(s j),
i.e. at the intermediate parametric space coordinates
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Parametric SpaceReference

113ms 21ms

%AE: 0.31

Embrasure
200K Triangles

340x334x330mm

3mm Radius

Lucy
200K Triangles

345x134x400mm

6mm Radius

360ms 57ms

%AE: 1.08
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Figure 7: Comparative visualization, timings and % Ab-
solute Error for the implemented geometric features (Sec-
tion 5.1).

s j = ti + j(s− ti)/Nsteps, wheres are theuv coordi-
nates ofp andNstepsis the number of chords. Depend-
ing on the local distortion of the parameterization,

Figure 8: Genus 20 Rim model. a) Parametric space charts.
b) Mean Curvature colorized for the same neighborhood
computed in 58ms. c) Zoom to detail.

P(s j) may not reside exactly on the same plane. Ac-
cording to the computed geodesic distance betweenqi
andp, a final set ofNg samples is retained,Ng ≤ Ntot,
andGAr is estimated by:

GAr =
Ng

Ntot
EAr , (11)

whereEAr is the Euclidean area.
Euclidean area can be approximated in the follow-

ing way. Let Ptot be the total number of pixels in
the elliptical region. Given the ratio of the samples
that satisfy the Euclidean criterion to the total sam-
plesNA(s)/Ntot, andAqm the mean area represented by
each sample inA(s), we approximateEAr as:

EAr = Ptot
NA(s)

Ntot
Aqm, (12)

Aqm is given by the formula:

Aqm =
1

NA(s)

NA(s)

∑
i=1

Aqi , (13)

where Aqi is the product of the distortion factors
lu(u,v), lv(u,v).

5.2 Results and Discussion

We have tested our generic parametric-space feature
estimation method using a large variety of objects,
ranging from simple geometric shapes to complex and
detailed 3D scanned models. Indicative results can be
seen in Figure 7 and Figure 8, where we report an av-
erage of 49× acceleration and 1.245% Absolute Error
(AE) relative to the reference CPU method described
below. Please note that in such comparisons, report-
ing maximum error is not indicative of the method’s
performance, since a slight mismatch in the represen-
tation at a single point due to parameterization can
cause an isolated but inconsequential measurement
difference. Timings of our method do not include the
parameterization and the charts boundary edge detec-
tion. Similarly, timings of the reference method do
not include theHalf-Edge (HE)data structure gen-
eration. It is importnat to mention here that while



Table 2: Average Computation time and % Absolute Error
over a set of models for the same metric over different res-
olutions and buffer precision. Error in comparison to the
reference CPU implementation.

geometric algorithms for computing features operate
on discretized values at a vertex or triangle level, the
parametric space calculations can exploit interpolated
values at arbitrary surface locations. Therefore, the
measurement deviations that are reported here as er-
rors, mostly stem from the different approximation
and sampling of the underlying surface. Timings for
the GPU parametric implementation are shown for an
NVIDIA GTX 670 GPU. We use 1024x1024 floating
point texture buffers, while metrics are computed over
a 512x512 buffer with 256 samples per pixel unless
stated otherwise. The reference geometric algorithm
results are shown for a Corei7-3820 system (4 cores
@ 3.60GHz, 8 threads) with 16GB of RAM and our
implementation uses theOpenMP APIand takes ad-
vantage of the current generation multi-core CPU’s.

The efficiency of our method is attributed to
the shift of the computations from a topology-
detail-dependent representation to two dimensions
with application-controlled (sampling) quality set-
tings, which enables very good scaling for multi-core
and many-core architectures. The proposed imple-
mentation is tailored for (but not limited to) commod-
ity GPUs.
Geometric Detail. In Figure 9 we present compara-
tive results computed over a fixed neighborhood size
(4% of object’s diagonal) for a single model (Em-
brasure) decimated at different geometric detail lev-
els. For small resolutions (25K, 50K triangles) we
observe similar computation times between geomet-
ric and parametric space approaches, while the %AE
is high in comparison to higher detail versions of the
mesh. This is expected as the parametric method uses
the position samples as interpolated by the GPU re-
sulting in smoother and therefore slightly different re-
sults than the CPU method. For larger resolutions, we
report an acceleration of 3× for the 100K model to
137× for the 1000K model, with a steady AE. Finally,
for the original scanned object resolution of 1200K,
we report a 181× faster computation with a slight
increase in the %AE. This is also expected and at-
tributed to the relative small buffer size for the dense
geometric detail. However, this can be trivially ad-
dressed by increasing the geometry buffer resolution
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Figure 9: Computations using the same metric and neigh-
borhood size (Left axis). Green line shows the %AE of the
parametric method (Right axis).

8x

15x

23x

30x

2% 4% 6% 8% 10% 12% 14% 16%C
o

m
p

u
ta

ti
o

n
 T

im
e

Size of Neighborhood (% object diagonal)

Scalability over Neighborhood Size 

Object Space

Parametric Space

0x 0.00

0.80

1.60

2.40

3.20

%
 A

b
s

o
lu

te
 E

rro
r

%AE

Figure 10: Computations using the same metric and geo-
metric complexity (Left axis). Green line shows the %AE
of the parametric method (Right axis).

to 2048x2048.
Neighborhood Size. In the measurements of Fig-
ure 10 we shift the focus from the geometric detail to
neighborhood size. Results are for the same model
(Embrasure) and metric (mean curvature) at 600K
resolution. We notice that for small neighborhoods
the %AE is higher. This deviation between the para-
metric and geometric domain results are due to the in-
adequate discrete representation of the neighborhood
in the geometric solution. While in the parametric do-
main due to the interpolation of values we mentioned
earlier, an increasing neighborhood size is directly re-
flected in a wider selection of samples, the geometric
neighborhood expands inn-ring discrete steps, which
is actually a deficiency. For very large neighborhoods
we notice also an increase to the %AE, this time, due
to the one jump per sample approach of our imple-
mentation (see end of Section 4.1), which starts miss-
ing samples. Performance-wise, the parametric space
method scales very well and proves unaffected by the
8× growth of neighborhood size. More specifically,
the computation time for the parametric domain fea-
ture estimator grows by 2.25 times in contrast to the
26.45× factor reported by the geometric approach.
Performance and quality control. The number of
samples per pixel, buffer size and size of the tex-
ture over which computations are performed, are pa-
rameters that control the quality/performance of our
method. As we can see in Figure 11, increasing the
number of samples reduces the %AE and has lin-
ear impact on the computation time, regardless of the
buffer resolution. The same effect have the buffer size
and the size of the texture over which computations
are performed (see Figure 12). Using these param-
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eters, performance and quality can be controlled de-
pending on the application requirements.

Memory usage - Texture size and precision. Four
RGBA textures are used (see Section 3.3). All the pre-
sented results so far were performed using half-float
precision textures. In order to evaluate the perfor-
mance/quality impact of full-float-precision textures
(FF), which double the memory requirements, we per-
formed experiments using both resolutions (Table 2).
FF buffers present an 8% and 11% performance
degradation on 512x512 and 1024x1024 buffers re-
spectively, while the corresponding improvement in
AE is 4% and 6%. We can conclude that the minor
quality improvement does not justify the performance
drop and the doubled memory requirements.

UV Parameterization. In order to evaluate how our
method is affected by the underlying parameterization
in terms of speed and quality, we performed several
tests. When operating on maps coming from global
surface parameterization (single chart) techniques, we
notice faster times, and increased error rates (see Fig-
ure 13) compared to multi-chart parameterizations
opting for minimal stretching. Single charts, mini-
mize branching operations but at the same time result
in greater distortion and less uniform sampling lead-
ing thus in loss of representation and measurement
accuracy.

Figure 13: Mean Curvature (Colorized) computed using
different parameterizations. Multiple charts result in in-
creased computation times, but smaller error, due to the
smaller distortion of the generated charts.

6 LIMITATIONS

Due to the fact that parameterization of the objects
surface is required, the method is limited to mesh ge-
ometries and it cannot be directly applied on point-
clouds.

7 CONCLUSION AND FUTURE
WORK

We presented a novel generic parametric-space ap-
proach for the computation of geometric features in
multiple scales. Decoupling of computational com-
plexity from the underlying geometry and the scale of
the features, leads to a fast, real-time method, suitable
for deformable/animated objects.

As future work we intent to evaluate the per-
formance of demanding applications, such as object
matching, object retrieval etc. using the parametric-
space computations.
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